基于FAST网络的毫米波雷达端到端手势识别

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TN957.52-34;TP18 文献标识码:A 文章编号:1004-373X(2026)01-0008-07

DOI:10.16652/j.issn.1004-373x.2026.01.002引用格式:,等.基于FAST网络的毫米波雷达端到端手势识别[J].现代电子技术,2026,49(1):8-14.

FAST network based end-to-end gesture recognition using millimeter-wave radar

ZHENGHao,LI Haoran,PENGGuoliang,ZHENGZhipeng,HUFen,HUAN Zhan (SchoolofMicroelectronicsand ControlEngineering,Changzhou University,Changzhou 213ooo,China)

Abstract:Inviewof thecomplexities,ineficieniesandlowaccuracyofcurrentmillimeter-waveradargesturerecognition methods,thispaperproposesanFAST(Fourier-Atention-SwinTransforer)networkmodelFirstlyacomplex-valuedlinarlaer isutilizedtoconstructaFouriernetwork,andtheweightsoftheFouriernetworkareintalizedwithdiscreteFouriertransform values.Range-Dopperfeaturesareobtainedafterradar’rawdatapassing throughtheFouriernetwork.Secondly,theECA (eficientchannelatention)moduleisintroducdtocalculateframe-channelatentionweights,enhancingthecapabilitytoextract gesture features.inally,the Swin Transformerisemployedtoimprovecomputationaleficiencyandrecognitionacuracywhile expandingthereceptivefield,andalossfunctionisusedforbackpropagationanditerativeupdatesofthemodelparameters. ExperimentalresultsdemonstratethattheproposedFAST-basedend-to-endgesturerecognitionalgorithmusing millmeter-wave radarachievesanaccuracy rate of 96.46% ,showcasing advanced performance in comparison with the other mainstream algorithms.Thisstudyoffersamorestreamlinedandeficientsolutionfortheapplicationofmillimeter-waveradargesture recognition in smart homes and mobile devices.

Keywords:millimeter-waveradar;gesture recognition;human-computer interaction;deep learning;neural network;discrete Fouriertransform

0 引言

手势作为一种直观且富有表现力的人际交流方式,同样也是一种极具潜力的人机交互手段。(剩余10766字)

monitor
客服机器人