结合特征增强注意力的混合卷积去雾网络

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TN911.73-34;TP391 文献标识码:A 文章编号:1004-373X(2026)01-0027-07

DOI:10.16652/j.issn.1004-373x.2026.01.005引用格式:,等.结合特征增强注意力的混合卷积去雾网络[J].现代电子技术,2026,49(1)::27-33.

Mixed convolutional dehazing network combining feature enhancement attention

FUChengcheng,WEIWeimin,YANG Tong,YANG Tiancheng (CollegeofComputer ScienceandTechnology,ShanghaiUniversityofElectricPower,Shanghai 2O13o6,China)

Abstract:Fogcancause severe visual degradation toimages,andafect theirdetailsand contrast.Furthermore,it wil impactthereadabilityoftheimagesandtheperformanceofsubsequentprocessingtasks.Inviewoftheincompletefeature extraction,lossofimagedetails,andpoordehazingeffectonnon-uniformhazyimagesfoundinexisting imagedehazing algorithms,amixedconvolutionaldehazingnetworkintegratingfeatureenhancementatentionisproposed.Diferential convolutioniscombinedwithriginalconvolutiontoformamixedconvolutionlayer,expandingthefeatureinformationextraction range.Thefeatureenhancementattention moduleformed bypixelatention mechanismandconvolutionalblockatentionmodule isusedtoimprovethedetailprocessngabilityofthenetwork.Thefeatureinformationofchannel,spaceandpixelisfusedto makethenetwork focusonthediferencesoffogdistribution.Experimentalresultsshowthattheproposednetworkcanextract featurescomprehensively,producedetailedandcleardehazedimages,andachievethoroughdehazing.Itperformswellonboth objectiveindicatorsandsubjectivevisualassessments,andhasgooddehazingefectwhilemaintainingstrongrobustnessand generalization ability.

Keywords:imagedehazing;image procesing;atention mechanism;featureenhancement;mixedconvolution;feature fusion

0 引言

图像去雾技术可以改善受雾气影响的图片质量。(剩余11891字)

monitor
客服机器人