结合特征增强注意力的混合卷积去雾网络

打开文本图片集
中图分类号:TN911.73-34;TP391 文献标识码:A 文章编号:1004-373X(2026)01-0027-07
DOI:10.16652/j.issn.1004-373x.2026.01.005引用格式:,等.结合特征增强注意力的混合卷积去雾网络[J].现代电子技术,2026,49(1)::27-33.
Mixed convolutional dehazing network combining feature enhancement attention
FUChengcheng,WEIWeimin,YANG Tong,YANG Tiancheng (CollegeofComputer ScienceandTechnology,ShanghaiUniversityofElectricPower,Shanghai 2O13o6,China)
Abstract:Fogcancause severe visual degradation toimages,andafect theirdetailsand contrast.Furthermore,it wil impactthereadabilityoftheimagesandtheperformanceofsubsequentprocessingtasks.Inviewoftheincompletefeature extraction,lossofimagedetails,andpoordehazingeffectonnon-uniformhazyimagesfoundinexisting imagedehazing algorithms,amixedconvolutionaldehazingnetworkintegratingfeatureenhancementatentionisproposed.Diferential convolutioniscombinedwithriginalconvolutiontoformamixedconvolutionlayer,expandingthefeatureinformationextraction range.Thefeatureenhancementattention moduleformed bypixelatention mechanismandconvolutionalblockatentionmodule isusedtoimprovethedetailprocessngabilityofthenetwork.Thefeatureinformationofchannel,spaceandpixelisfusedto makethenetwork focusonthediferencesoffogdistribution.Experimentalresultsshowthattheproposednetworkcanextract featurescomprehensively,producedetailedandcleardehazedimages,andachievethoroughdehazing.Itperformswellonboth objectiveindicatorsandsubjectivevisualassessments,andhasgooddehazingefectwhilemaintainingstrongrobustnessand generalization ability.
Keywords:imagedehazing;image procesing;atention mechanism;featureenhancement;mixedconvolution;feature fusion
0 引言
图像去雾技术可以改善受雾气影响的图片质量。(剩余11891字)