基于全局与局部特征引导的显著性目标检测网络

  • 打印
  • 收藏
收藏成功


打开文本图片集

DOI:10.16652/j.issn.1004-373x.2026.01.019 引用格式:,.基于全局与局部特征引导的显著性目标检测网络[J].现代电子技术,2026,49(1):124-128.

关键词:全局与局部特征引导;显著性目标检测;深度学习;特征增强;多尺度;特征融合中图分类号:TN911.73-34;TP3 文献标识码:A 文章编号:1004-373X(2026)01-0124-05

Salientobject detectionnetworkbasedon globalandlocal feature guidance

WANGZhengkai,ZHOUYongxia (CollegeofInformationEngineering,ChinaJiliangUniversity,Hangzhou31oo18,China)

Abstract:Salientobjectdetectionaimstoidentifysalientregions withinanimage.However,existing methodsoftenperform porly whenhandling images incomplex scenesormulti-scaleobjects.Theexisting networkfailstolocatetheobjectsaccurately whendealing withcomplexscenes,soaglobalandlocalfeatureenhancement moduleisintroducedbasedonthecharacteristics of humanvisualsystemtohelpthenetwork obtain moreabundantandacurate features.For theissueofsuboptimalperformance in multi-scaleobjectdetection,anatention mechanism basedmulti-scalefeature fusion moduleis proposed.This module strengthensthefusionofmulti-scalefeaturesandextractsdeeperglobalfeatures.Anerorlossweightisdesigned.Thediference betwen theunionand intersectionofthe predicted mapsand groundtruth mapsiscaleulatedandtakenasthe weightforthe loss function.Bycomputingpixel-levelrors,thenetwork'ssensitivitytolocalfeaturesandspatialconsistencyareenhanced. Comparisons on fivepublicdatasets againsttwelve advanced methods showthatthe proposed method performs beteron multiple metrics,demonstrating its superiority and efficiency.

Keywords:globalandlocal featureguidance;salientobjectdetection;deeplearning;featureenhancement;multi-scale; feature fusion

0 引言

显著性目标检测旨在对复杂多样的图像中视觉上最明显的区域,即显著性区域进行识别与分割。(剩余7161字)

monitor
客服机器人