基于改进EEMD-FFT-FRFT的非平稳故障特征提取方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:非平稳信号处理;故障特征提取;故障诊断;改进EEMD-FFT-FRFT法;变转速工况;强噪声环境中图分类号:TN911.7-34;TH113.1 文献标识码:A 文章编号:1004-373X(2026)01-0129-08

Non-stationaryfaultfeatureextractionmethodbasedonimproved EEMD-FFT-FRFTmethod

JIANG Bangyu1², ZHANG Zhenghua1,²,MENG Da1,2 ,LIBin†²,ABUDUKAYIMUAbulimiti3 (1.CollegeofInformationandArtificial Intelligence,Yangzhou University,Yangzhou 225127,China; 2.JiangsuProvinceEngineeringResearchCenterofKnowledgeManagementandIntelligentService,Yangzhou225127,Cina; 3.Yangzhou Zhishui Internet of ThingsCo.,Ltd.,Yangzhou 2256OO,Chia)

Abstract:Fault feature extractionof non-stationary signals incomplex industrial environment remains chalenging inthe fieldof signalprocessingandfaultdiagnosis,particularlyunderstrongnoiseinterferenceandof-designconditions.Thefeature extractionefectoftheexistingmethodsisstilldificulttomeetheengineeringrequirementsInviewoftheabove,thispaper presentsanenancedsignalprocessingmethodbasedonimprovedfractionalFouriertransform (FRFT)toimprovetheextractionefect offaultfeaturesofstatioaysignals.Firstlyhecolltedvbratiosignalsarepreproessdbynveloedemodulationadan normalization,and then decomposedbyensembleempirical modedecomposition(EEMD)toavoidmodalaliasing inEMD. Secondly,thefastFouriertransform(FF)isutilizedtoobjectivelyselectintrinsicmodefunction(IMF)containingkeyfeatures. Finaly,theFispdfortesletedI,sostaleaturetractdseuppresionExpeimetalation onarollngbearingplatformdemonstratesthat theproposed methodextractsfaulteatures morecompletelyandclearlywithreduced noiseincomparison withtheexisting algorithms.Tosumup,theefectiveness of theproposed method has beenconfirmed.

KeyWords:non-stationary signalprocessing;fault feature extraction;faultdiagnosis;improved EEMD-FFT-FRFTmethod; variable-speed operatingcondition;high-noiseenvironment

0 引言

生产的关键。(剩余8777字)

monitor
客服机器人