基于多任务学习的跳频调制方式识别与信噪比估计方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TN911.72-34 文献标识码:A 文章编号:1004-373X(2026)01-0066-07

Frequency hopping modulation mode identification signal-to-noise ratio estimation method based on multi-task learning

,WANGHao1,², (1.SchoolEnginering,,Oo94,China; 2.,,China)

Abstract:Animprovedmethodisproposedtoeliminatetheseesawefectinmulti-tasklearningFHsignalrecognition improve thegeneralizationability modelstrained with IQsignals.TheCGCmulti-task network framework combined with largeconvolution kernelstructuralreparameterization techniquesareadopted toenhancetheacuracyFHsignal modulationrecognitionSNRestimation.Thehardparametersharingisemployedforthemulti-tasknetworkarchitecture, the networkchannelsareclasified intoexpertchannelssharedchannels.Inaddition,the MobileBlock layers thatnclude largeconvolutionkernel structuralre-parameterizationresidual structuresareintroduced.IncomparisonwiththeMMOE structural model,theproposedmethodachieveshigherclassificationaccuracyforFHsignalmodulationrecognitionlower meansquarederror(MSE)forSNRestimation.Experimetalresultsdemonstratetheapplicationpotential theproposedmethod in modern military communication confrontations.In addition,the proposed method is robust for FH signal recognition parameter estimation.

Keywords:FHsignal;modulationrecognition;SNRestimation;multi-tasklearning;largekernelconvolution;structural reparameterization

0 引言

跳频信号具有低截获概率以及很强的抗干扰能力,因此在军事无线电通信中,跳频技术被广泛采用,既能提高通信的保密性与抗干扰能力,又能防止敌方的截获与干扰,极大地增强了作战能力。(剩余8206字)

monitor
客服机器人