基于人工智能的高压电缆接地故障诊断方法研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TM75 文献标志码:A 文章编号:2095-2945(2025)19-0044-04

Abstract:Thispaperproposesa faultdiagnosismethod basedondeeplearming tosolve theproblemsoflowpostioning accuracyandslowdiagnosiseficiencyinhigh-voltagecablegroundingfaultdiagnosis.Themethodfirstpreprocessesandextracts featuresonthecolectedcablefaultsignalsthroughwavelettransform,andbuildsafeaturedatasetcontainingmultipleground faulttypes;thendesignsanimprovedconvolutionalneuralnetworkmodelthatintegratestheatentionmechanismandresidual connectionstructure,realizingadaptivelearingandclassficationoffaultcharacteristics;Finall,areal-timefaultdiagnosis systemisdevelopedtoachieverapidfaultlocationandidentification.Experimentalresultsshowthatinthefaultdiagnosisof10\~ 35kVhigh-voltage cables,the fault location accuracy of this method reaches 98.5% ,whichis 15% higher than the traditional method,andtheaveragediagnosistimeisshortenedto2.3seconds,anditstillmaintainsstablediagnosisperforancein complexnoiseenvironments.Thismethodhasbeeapliedintransmisson linefaultdiagnosisofaprovincialpowercompany, providing an effective guarantee for the safe and stable operation of the power system.

Keywords:high-voltagecable;groundfaultdiagnosis;deeplearning;faultfeatureextraction;intellgentdiagnosissystem

近年来,随着电力系统规模的不断扩大和供电可靠性要求的持续提高,高压电缆在电力传输中的应用日益广泛。(剩余5841字)

目录
monitor