基于ToF红外图像的手部轻量化检测算法设计与优化

打开文本图片集
摘 要:嵌入式设备上实现快速精准的手部检测主要面临两个挑战:一是复杂的深度学习网络很难实现实时的手部检测;二是场景复杂性导致基于RGB彩色图像的手部检测算法准确率下降。与主流基于RGB图像的检测技术不同,基于ToF红外图像的轻量化手部检测算法实现了红外图像中手部的精准快速检测。首先,通过自主研发设备采集了22 419张静态红外图片,构建了用于手部检测的红外数据集;其次,通过对通用目标检测算法进行轻量化改进,设计了RetinaHand轻量化手部检测网络,其中采用了MobileNetV1和ShuffleNetV2两种不同的轻量化网络作为模型骨干网络,并提出了一种融合注意力机制的特征金字塔结构Attention-FPN;最后,在红外数据集上与常规方法进行了对比实验,验证了该方法的有效性。(剩余14323字)