区块链赋能多边缘安全联邦学习模型

打开文本图片集
摘 要:联邦学习是一种革命性的深度学习模式,可以保护用户不暴露其私有数据,同时合作训练全局模型。然而某些客户端的恶意行为会导致单点故障以及隐私泄露的风险,使得联邦学习的安全性面临极大挑战。为了解决上述安全问题,在现有研究的基础上提出了一种区块链赋能多边缘联邦学习模型。首先,通过融合区块链替代中心服务器来增强模型训练过程的稳定性与可靠性;其次,提出了基于边缘计算的共识机制,以实现更加高效的共识流程;此外,将声誉评估融入到联邦学习训练流程中,能够透明地衡量每一个参与者的贡献值,规范工作节点的行为。(剩余17145字)