面向异构效用的移动群智感知多目标任务分配

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:当前移动群智感知(MCS)任务分配往往只考虑工人或平台单方面的效用,并且效用的构成也不够全面。因此基于工人信誉指数和任务熟练指数,设计了工人和平台两方面的异构效用机制,并提出一种双种群竞争的多目标进化算法(DCMEA)来获得最优的工人和平台异构效用。该算法首先通过随机贪婪初始化种群,然后使用二元竞标赛算法将种群划分为胜者种群和败者种群,并针对每个种群采用不同的进化策略。(剩余17081字)

目录
monitor