注册帐号丨忘记密码?
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选择不同档位的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章、杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
打开文本图片集
摘 要:联邦学习的提出解决了在隐私保护下完成多客户合作的机器学习问题,而激励客户参与联邦学习是模型性能提高的一个重要前提。针对客户数据非独立同分布特征会导致联邦学习性能下降这一问题,考虑预算约束下,设计了基于单位数据成本和数据特征—EMD距离的客户端筛选方式,提出一种有效的联邦学习激励机制(EMD-FLIM),从理论上证明了机制具有诚实性,即每个客户会诚实披露数据成本和数据分布信息,同时机制具有预算可行性、个人理性及计算有效性。(剩余14815字)
登录龙源期刊网
购买文章
不平衡数据下预算限制的联邦学习激励机制
文章价格:6.00元
当前余额:100.00
阅读
您目前是文章会员,阅读数共:0篇
剩余阅读数:0篇
阅读有效期:0001-1-1 0:00:00