不平衡数据下预算限制的联邦学习激励机制

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:联邦学习的提出解决了在隐私保护下完成多客户合作的机器学习问题,而激励客户参与联邦学习是模型性能提高的一个重要前提。针对客户数据非独立同分布特征会导致联邦学习性能下降这一问题,考虑预算约束下,设计了基于单位数据成本和数据特征—EMD距离的客户端筛选方式,提出一种有效的联邦学习激励机制(EMD-FLIM),从理论上证明了机制具有诚实性,即每个客户会诚实披露数据成本和数据分布信息,同时机制具有预算可行性、个人理性及计算有效性。(剩余14815字)

目录
monitor
客服机器人