基于Transformer和双重注意力融合的分层交互答案选择模型

打开文本图片集
摘 要:答案选择是问答系统中的关键组成部分,提升其准确性是问答系统研究的重要内容之一。近年来深度学习技术广泛应用于答案选择,获得了良好效果,但仍旧有一定的局限性。其中模型对问题语义信息利用度低、缺乏局部语义重视、句子间交互感知能力差等问题尤为突出。针对上述问题提出了一种基于Transformer和双重注意力融合的答案选择模型NHITAS(new hierarchical interactive Transformer for answer selection)。(剩余21981字)