基于MapReduce和MSSA的并行K-means算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:针对大数据环境下并行K-means算法存在的面对高维数据聚类效果差、数据分区不均匀、初始质心敏感等问题,提出了一种基于MapReduce和MSSA的并行K-means算法MR-MSKCA。首先,提出基于肯德尔相关系数和深度稀疏自动编码器的降维策略(dimensionality reduction strategy based on Kendall correlation coefficient and DSAE,DRKCAE)对高维数据进行特征加权和特征提取,解决了高维数据不相关特征和结构稀疏导致的聚类效果差的问题;其次,提出基于两段映射的广义超平面分区策略 (uniform partition strategy based on two-stage mapping,UPS)对数据集进行划分,获取均匀的数据分区;最后提出非均匀变异麻雀搜索算法 (non-uniform mutation sparrow search algorithm,MSSA)用于获取并行K-means的聚类质心,解决了算法初始质心敏感的问题。(剩余23860字)

目录
monitor
客服机器人