注册帐号丨忘记密码?
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选择不同档位的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章、杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
打开文本图片集
摘 要:知识追踪模型以学习者的历史学习行为数据作为输入,通过概念表示来描述学习者的概念掌握状态,从而预测学习者未来的学习表现。然而在概念的外延表示方面,当前知识追踪研究的概念外延信息被限制在一阶相关的范畴内,无法表征概念的一阶以上外延信息。为了解决这一问题,提出方法首先使用图结构描述概念内涵信息及其相互关系;其次使用图神经网络的池化操作等提取概念的外延表示,这保证了概念的外延信息来源于多阶相关关系;再与概念的内涵表示进行融合;最后预测学习者未来的答题情况。(剩余15071字)
登录龙源期刊网
购买文章
概念表示增强的知识追踪模型
文章价格:6.00元
当前余额:100.00
阅读
您目前是文章会员,阅读数共:0篇
剩余阅读数:0篇
阅读有效期:0001-1-1 0:00:00