编程学习中学生行为分析与结果预测

打开文本图片集
摘 要 通过收集RoboMise这一自适应编程学习系统中学生的行为数据,应用统计分析方法进行学习行为分析;基于学习行为数据,利用机器学习方法,对学生解决任务的结果进行预测。研究结果表明:可以根据学习行为对学习结果作出预测,随机森林算法的综合预测效果最优。
关键词 编程;学习行为;RoboMise;数据挖掘;自适应学习系统
中图分类号:G633.67 文献标识码:B
文章编号:1671-489X(2022)14-0053-07
Behavior Analysis and Result Prediction of Students in Programming Learning//WEI Guoxia, JIANG Bo
Abstract This study collects the behavior data generated by
students in RoboMise, an adaptive learning system for intro-
ductory programming and use statistical analysis methods to
analyze learning behavior. Further, based on the learning be-havior data, the results of students’ task solving are predicted by using machine learning. The results show that the learning results can be predicted according to the learning behavior, and the comprehensive prediction effect of random forest al-gorithm is the best.
Key words programming; learning behavior; RoboMise; data
mining; adaptive learning system
0 引言
随着人类使用信息技术方式的变化,在线教育越来越普及,智能教学系统(Intelligent Tuto-ring Systems,ITS)可以通过部署新的教学策略来
利用这些转变。(剩余9337字)