基于机器视觉与深度学习的烟用商标纸质量评价方法研究

打开文本图片集
关键词:机器视觉;深度学习;YOLOv8;商标纸质量检测;相似度计算
中图分类号:TS736;TP27 文献标识码:A DOI:10.11980/j.issn.0254-508X.2025.11.02
Study on Quality EvaluationMethod of Cigarette Trademark Paper Based on Machine Vision and Deep Learning
WANG Lyu1CAO Changqing'SI Yong1SHEN Qiang2DING Ran1LIN Sen'SHEN Zhiyan1XUE Chen² XIA Zhicheng1CHEN Renyu1XU Yanmin1ZHANG Jun'PENG Yunfa²ZHAN Ying2* (1.ShanghaiTbacoGroupCo.,d.,hanghaio82;2.anghaihuangheyiElectonicTechnologyDevelopmentCo.d, Shanghai,) ( E-mail: Zhanying@shmicrovision.com)
Abstract:Tivestigatetealcatiofmachevisionthologintegatingdeplearinginevaluatingtequalityispetioultsof cigaretetrademarkpper,tisstudyproposedaomprhensieevaluationmethod.Ahigresolutionindustrialcameraustomzedligt sources,ndspecializedftwaresystemswereemploedtoonstructaaotateddatasetDyamicthresholdOBfeaturedtectioptimizedRANSACregstration,ndulti-andfusionstrategieswereadopted,fectivelyeliinatingstichingseams.TeiagsRof 38.9dBandSSMofO.94.Forfeaturerecognition,theYOLOv8modelwasenhancedbyintroducingaCBAMatentionmodule,combined with a ResNet-34 backbone network and FPN multi-scale feature fusion,achieving 99.4% mAP50, 99.6% recall,and 99.0% precision on thetestet.Adual-branchSiamesenetworkwasdesignedtocomputesimilaritybyfusingSFTdescriptorsanddepsemanticfeatures, achieving average recognition accuracies of 97.64% for small box trademark paper and 95.85% for carton trademark paper. Key words:machine vision;deep learning;YOLOv8;cigarete trademark paperquality inspection;similaritycomputation
在当今竞争激烈的市场环境中,商标作为品牌的核心标识,承载着企业的声誉、形象与消费者的认知。(剩余9984字)