差分拉曼光谱结合PCA-RCSC-Transformer对快递面单的检验研究
快递面单检验

打开文本图片集
关键词:差分拉曼光谱;快递面单;正交约束主成分分析;元素比例-余弦相似度聚类中图分类号:TS77;0657.3 文献标识码:A DOI:10.11980/j. issn. 0254-508X.2025.11.023
Differential Raman Spectroscopy Combined with PCA-RCSC and Improved Transformer for Courier Face Sheets Inspection Research
JIANG Hong1,2.3.*MA Xingyu² (1.DepartmentofCriminalScienceandTechnology,Hu’nanPoliceCollege,Changsh,Hu’nanProvince,4138;.Collegeof Investigation,People'sPublicSecurityUniverstyofChinBeijing,Oo38;3.CenterofFrensicSienceofBeijingHuiZhengZuYue Technology Co.,Ltd.,Beijing,102446) (*E-mail: jiangh2001@163.com)
Abstract:Addressingthhallengesofasilyfdinghandwitingandstableflrcomponentsintealpaper-basedcourierfaceshets, thisstudycollteddatafro73exprssdlrybelsamplesfovarousansandprintingdatestroughdiferetialaaso copy,andproposedaovelmethodintegratingmodifiedortogonallonstrainedprincipalcomponntanalysis(CA),ndelntati cosinesimilariyustering(RCSC),ombinedwithaTansforerodelicorporatingasparseaentiomechanismfordataclasification prediction.TeresultssowedthatorthogoallonsraiedPCAeducedthedimensonofdierentialRamanspectralataandsultein a compression rate of 95.6% , while RCSC supplemented by manual validation,categorized the samples into four classes.Further classification using the sparse attention-based Transformer model achieved an forecast accuracy of 90.0% ,significantly outperforming traditional methods such as random forest and support vector machines.
Keywords:DiferentialRamanspctrosopy;ourfcesets;rogoallyonstainedprincialomponntaalysis;lmetalati cosine similarity clustering
随着快递业的迅速发展,快递面单的使用日渐普遍。(剩余8480字)