基于支持向量机和BP神经网络的天津市水产品冷链物流需求预测研究

打开文本图片集
Abstract: Inorder toimprove theacuracyofdemandforecasting forcoldchainlogisticsofaquatic products,thispaperusesa forecasting methodbasedonsupportvector machines.ThispaperfirstusesGreyRelationalAnalysistoselectrelevantindicators affectingdemandforecastingforcoldchainlogisticsofaquaticproducts,andtheninputssampledataintothemodelforlearning. Finally,amodelisconstructedtodescribethenonlinearreltionshipbetweenaquaticproductcoldchainlogisticsdemandand influencing factors.Thepapertakesthecoldchainlogisticsdemandof Tianjinaquaticproductsasan example,andthesiulation resultsshowthatsupportvector machineshavehigherpredictionacuracythanBPneuralnetworks inaquaticproductcold chainlogisticsforecasting,sotheuseofsupportvectormachineforecastingmodelhasabroaderaplicationprospectinaquatic product cold chain logistics demand forecasting.
Key Words: aquatic products; cold chain logistics; demand forecasting; support vector machines; BP neural networks
0引言
“冷链”是一种包括从生产、加工、储存、运输到销售等各阶段的温度控制在内的一套系统,以确保商品的新鲜度和质量。(剩余5333字)