基于BP神经网络的网约车服务质量研究

打开文本图片集
中图分类号:F572 文献标志码:A DOI: 10.13714/j.cnki.1002-3100.2025.12.014
Abstract:Toexplorethekeyfactorsafecting thequalityofonlineride-haiingservices,aBPneuralnetworkisusedto construct anonlineride-hailing servicequality model.The paperuses MIVtoanalyzetheimportanceof influencing factorsand appliesK-meansclusteringmethodtoanalyzetheheterogeneityofonlineride-hailingpassengers.Theresultsindicatethat factorssuchasdriversatisfaction,travelcosts,traveltime,operatingtimerange,andtraficsafetyplayakeyoleintheoeall servicesatisfactionofonlineride-halingservices,andthecorrespondingcountermeasuresareproposedbasedontheimportance of above-mentionedfactors.Usingpassngergender,age,averagemonthlyhouseholdincome,andfrequencyofonlineridehailing usageasclusteringvariables,fourdiferentcharacteristicsofolieridehailingpasengergroupsareidentified.Thepaperprovides a theoretical basis and practical guidance for improving the quality of online ride-hailing services.
Key Words: online ride-hailing; service quality; BP neural network; MIV; K-means
0引言
随着Uber、Lyft、滴滴出行、Grab各种网约车平台的兴起,网约车逐渐成为人们日常出行的重要组成部分。(剩余6289字)