基于XGBoost和混合Logit模型的机动车对撞事故受伤严重程度分析

打开文本图片集
关键词:交通安全;伤害严重程度;机器学习;XGBoost模型;混合Logit模型中图分类号:F540;U491.31 文献标志码:A DOI: 10.13714/j.cnki.1002-3100.2025.12.013
Abstract:Thisaticleanalyzestheinfluencingfactorsof head-oncolionsinvolvingmotorvehicles,inlightoftherisingnumberof suchacidentsThearticleobtainstraffcacidentdatafromNorthCarolina,USA,coveringtheyearsfrom2O13to2017. Itcategorizestheseverityofacidentsbasedontheinjuryseverityofpeopleinvolved,using fourmainaspects:humanfactors, vehicleharacteristics,roadconditionsandenvironmentalinfluences.Atotalof41factorsareselectedasindependentvariables, whiletheseverityofinjuriesservesasthedependentvariable,ategorizedintofivelevels:noinjuries,minorinjuries,serious non-disablinginjuries,seriousdisablinginjuries,andfatalinjuries.ApredictivemodelisestablishedbasedontheExtreme GradientBosting (XGBost)algorithmandmixedLogitmodel.First,theaccidentdataisanalyzedusingtheXGBostpredictive modeltoidentifythetop2Oindependentvariablesthatsignificantlyimpacttraficaccidents.Thesevariablesarethenputinto themixed Logit model to filter for independent variables with a significance level of P<0.05 .The results indicate that four variables-drivercharacteristcs(drivingudertheinfluence),roadcharacteristics(curvature)oadconditions(icysurfaces)and functionalareas (farmlands,forests,pastures)—exhibitrandomorparametercharacteristics.Ananalysisofthemarginaleffects from the mixed Logit model shows that when vehicle speed limits exceed 60km/h ,the risk of serious disabling injuriesis increased by 0.71% ,and the probability of fatal accidents rises by 0.83% ,compared to speed limits between 36km/h and 60km/h . Basedonthesefindings,measurescanbeakentopreventtheoccurenceofsuchaccidents,providingdatasupportandaheoretical basis for traffic managers and policymakers.
KeyWords:traffic safety;injuryseverity;machine learning;XGBoostmodel;mixedLogitmodel
0引言
世界卫生组织最新发布的《2023年道路安全全球现状报告》中指出,自2010年以来,道路交通死亡人数每年下降 5% 降低至每年119万人。(剩余14374字)