基于综合数据平台分析的在线学习评估与预测算法设计

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:综合数据平台;多源融合技术;递归神经网络;在线学习平台;数据预测;数据评估中图分类号:TN919-34;TP183 文献标识码:A 文章编号:1004-373X(2025)20-0171-05

Design of online learning evaluation and prediction algorithm based on comprehensivedataplatform analysis

ZHUKai’,LI Peng²,WANG Qinyong1, TONGFeng1, ZHU Ge³ (1.Network and Digital ResourceCenter,Beijing Open University,Beijing1Ooo81,China; 2.SafetySensingusinessDepartmentBeijingSmart-chipicroelectroncsTechnologyCo.,Ltd.,BeijingO92Cina; 3.CollgeofArchitectureandEngineering,Zhengzhou Business University,Zhengzhou 451299,China)

Abstract:Inorder toachieveaccurateevaluation,predictionand intellgent processingof various typesof data inthe onlinelearning platform,adataevaluationandpredictionalgorithmbasedoncomprehensivedataplatformanalysisisproposed. Themulti-sourceacquisition technologyisusedtocolectvariousdata,andmulti-sourcefusiondataanalysisisconducted,which canlaythefoundationforinteligentdataevaluationandprediction.Therecursiveneuralnetworkalgorithmisintroducedinto thedata platformforthedynamicallyanalysis,soastorealize intellgentprocessngofvarious typesofdata.Byestablishing two layerhiddenlayerstructureofrecursiveneuralnetwork,thedataisevaluatedandpredictedaccordingtotherecursiveflow,soas to improve theevaluationaccuracyand predictionaccuracyofmulti-sourcedata.Theexperimentsontheproposedalgorithmare conductedandcompared withothersimilardata processing algorithms.Theresultsshowthatthealgorithmcanrealizeadata evaluation accuracy of 88.6% andadata prediction accuracy of 87.8%,providing a solution for the auxiliary analysis and processing of data on online learning platforms.

Keywords:integrateddataplatform;multi-source fusion technology;recursiveneuralnetwork;online learningplatform; dataprediction;data evaluation

0 引言

近年来,随着信息技术的飞速发展和“互联网 + 教育”模式的深入推进,在线教育迎来了前所未有的发展机遇,成为新时代推动教育公平与质量提升的重要力量。(剩余4497字)

monitor
客服机器人