基于GA-BO-LSTM的电解电容剩余寿命预测

打开文本图片集
引用格式:,,.基于GA-BO-LSTM的电解电容剩余寿命预测[J].现代电子技术,2025,48(20):81-86.
关键词:剩余寿命预测;遗传算法;贝叶斯优化;长短期记忆网络;超参数优化;调优区间;分层抽样中图分类号:TN86-34;TM535 文献标识码:A 文章编号:1004-373X(2025)20-0081-06
RULpredictionofelectrolyticcapacitorsbasedonGA-BO-LSTM
LIUXinyi,LIXiaobo,SHI Shangxian (SchoolofUrbanRailTransportation,ShanghaiUniversityofEngineeringScience,Shanghai2O162O,China)
Abstract:Theremainingusefullife(RUL)predictionofsingleproductisofgreatsignificanceforthestableandreliable operationofthesystem.Inorder toimprovetheaccuracyof theRULpredictionofelectrolyticcapacitorsandresolve the problemsofsuddensystemfailurescausedbylowpredictionaccuracy,amethodofRULpredictionthatcombiningGenetic algorithm(GA)and Bayesianoptimization(BO)todeterminethehyper-parametersof thelongshort-termmemory(LSTM)network isproposed.Hermite interpolationisusedforthedatapreprocesing.GAandBOareusedtoperformglobaloptimization respectively on three hyperparameters of the LSTM model: the initial learning rate,the L2 regularization coefficient,and the numberof hidden layercells.Thetwoobtained hyperparametersrepresenting thesame meaning wereservedas boundaryvalues toconstructanovelparameterstuning interval.Latinhypercubesampling(LHS)wasemployedforthestratifiedsampling,and therootmeansquareerorand meanabsoluteerror wereused todeterminetheoptimalnumberoflayersas6.Thealgorithmwas validatedbasedontheacelerateddegradationtestingdataofelectrolyticcapacitorsfromNASA.Theresultsshowthatthe proposed algorithm canreduetheerorbyatleast38.57%comparedwithLSTM,GA-LSTM,andBO-LSTM,demonstrating significantlyhigherprediction accuracy.
Keywords:remaininguseful lifeprediction;geneticalgorithm;Bayesianoptimization;longshort-termmemory;hyperparameter optimization; optimization interval;stratified sampling
0 引言
产品的剩余寿命(RemainingUsefulLife,RUL)预测可提前识别潜在故障,提升设备的可靠性和安全性1。(剩余6467字)