深度学习的用户数据自监督安全防御

打开文本图片集
引用格式:喻佳.深度学习的用户数据自监督安全防御[J].现代电子技术,2025,48(20):30-34.
关键词:用户数据;深度学习;自监督;安全防御;编码器网络;异常攻击识别;数据风险等级评估中图分类号:TN912.2-34;TP393 文献标识码:A 文章编号:1004-373X(2025)20-0030-05
Abstract:Inorder tocope withcomplex andever-changingdataattack paterns,process datastreams inreal-time,and enhance securitydefensecapabilities,a methodofuserdata self-supervisedsecuritydefensebasedondeep learning is proposed. Theuserdatasecuritydefensemodelisconstructed,theencodernetworkanddecodernetwork inthevariationautoencoderare usedforthedataprocessingbycombiningdeplearningandself-supervisedlearningtechnology,soastoidentifyuserdata abnormaldefense,calculateuserdatastandarddeviation,evaluatedatarisklevel,andimplementuserdatasecuritydefense accordingtotheresultsofdatarisk assessment.Bytaking thestudentachievementdata fromthe teaching managementof a colegeiProvinceasthebasicdataset,thedefensefectoftheproposedmethodisdetected.Theexperimentalresults demonstratethatthismethodcaneffectivelyhandlestudentuserdataunderlow,medium,andhighatack intensities,ensuring theintegrityof studentachievementdata.Undervarying amountsof abnormaldata,thedefenseratecanremainabove96%,with a dataleakageriskbelow 1.67% .The securitylevel ishigh,and the fluctuation range of defense capabilityisless than 2% . The proposed method can contribute to the intelligent development in the field of data security defense.
Keywords:userdata;deeplearning;self-monitoring;securitydefense;encodernetwork;abnormalatack identification;data risk level assessment
0 引言
用户数据作为数字化生态的核心,能够记录与用户相关的数据,为人们提供精准的数字化信息。(剩余5437字)