基于时空图卷积网络的有源配电网故障定位方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TN92-34;TM773 文献标识码:A 文章编号:1004-373X(2025)20-0105-08

引用格式:,,,等.基于时空图卷积网络的有源配电网故障定位方法[J].现代电子技术,2025,48(20):105-112.

Method of active distribution network fault location based on spatio-temporal GCN

XU Yanbin,GAO Xuejun, ZENG Xiangjun,WANG Can,YU Bo,LI Ruiling (CollgeofElectrical andNewEnergy,China ThreeGorgesUniversity,Yichang4430O2,China)

Abstract:Inallusiontothechallngeoffault localization inactive distributionnetworksduetocomplex topologyand variablepowerflowdirections,amethodofactivedistributionnetworkfaultlocalizationbasedonspatio-temporalgraph convolutionalnetwork(CN)isproposedbyombinghespatitemporalcoelationofdistributionnetworkfaultinforationThe modedecompositionisemployedtoobtainandreconstructvoltagecomponentswith richerfaultfeatures.The Hilberttransformis usedtoextractvoltageamplitude-frequencyfeatures,whichiscombinedwiththedistributionnetwork topologytoconstructgraph data.Thespatio-temporalconvolutional module withinthespatio-temporal GCNisused to extractandfuse amplitude-frequency featuresofthevoltage,andtheoutputlayercanprovidethefaultindexofeach nodeinthegraphtorealizethefaultlocation. Thesimulationresultsshow thattheproposedmethodcan demonstratehighreliabiltyand generalizationunderdiferent fault scenariosbylearningthespatio-temporalfeaturesoffaultinformationateachnodeofthedistributionnetwork,andcanexhibit strong robustness under data interference.

Keywords:activedistributionnetwork;spatio-temporalgraphconvolutional network;faultlocation;spatio-temporal correlation; mode decomposition; Hilbert transform

0 引言

有源配电网由于拓扑结构复杂、潮流方向多变、设备数量众多,故障率较高。(剩余11251字)

monitor
客服机器人