基于降秩核独立成分分析的故障检测算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:核独立成分分析算法;故障检测;降秩;核矩阵;田纳西-伊斯曼过程;统计量中图分类号:TN911.7-34;TP277 文献标识码:A 文章编号:1004-373X(2025)20-0135-07

FaultdetectionalgorithmbasedonRR-KICA

GUOJinyu,FENGChuang,LIYuan (CollegeofInformation Engineering,Shenyang UniversityofChemical Technology,Shenyang11O142,China)

Abstract:Inorder tosolvetheproblemof high computationalcomplexityandlong running timeof traditional kernel independentcomponentanalysis (KICA)algorithmwhenprocessingalargenumberofsamples,afaultdetectionalgorithmbased onreducedrankkernelindependentcomponentanalysis(RR-KICA)isproposed.Thisalgorithmcanimprovetheconstructionof thekernelmatrix,calculatethekernelvectorofeachnewdata,andupdatethekernelmatrixbyaddingrowandcolumnvectors. Basedonwhetherthekernelmatrixisfullrank,thekernelvectorisretainedornotcanbedetermineduntilthecompletepartof thekernelvectoriscalculatedandthekernelmatrix isconstructed,thusestablishing theRR-KICAmodelandcalculatingthe I2 statisticandcontrol limitof thetraining data.The testing dataisprojected ontotheRR-KICA model,and the I2 statistic is calculated and compared with the control limit of the training data.If the Iz statistic exceeds the control limit,it indicates a fault. TheproposedalgorithmisapliedtotheTenessee-Eastan(TE)process,adcompaedwithKCA,KLPP,KECA,KICA, KEICAandRR-KPCAalgorithms.TheresultsshowthatRR-KICAalgorithmhasbeterfaultdetectionperformancethanother algorithmsintermsofdetectionrate,falsealarmrate,detectiondelayandrunningtime.IntheRR-KICAalgorithm,therank reductionmethodisappliedtothecalculationofthekernlmatrix,rducingthedimensionalityoftekerelmatrix,simplifying theKICAmodel,faciliatingtheextractionofmoredatainformationinthefuture,andalsoshorteningthealgorithm'sruing time.

Keywords:kerelindependentcomponentanalysis;faultdetection;reducedrank;kerelmatrix;Tenneee-Eastmanproes; statistic

0 引言

代工业生产过程逐渐向复杂化方向发展,与之相关的故障检测技术变得尤为重要。(剩余8510字)

monitor
客服机器人