改进BP神经网络的车载称重测量方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:车载称重系统;鹦鹉优化算法;BP神经网络;胎压传感器;货车载重;测量精度中图分类号:TN912.2-34;TP274 文献标识码:A 文章编号:1004-373X(2025)20-0069-05

Method of on-board weighing measurement based onimproved BP neural network

WANGHaoqi1,YINJihui1,ZHENGXuguang²,CHENDongdong',ZHANGPenglei² (1.SchoolofElectricalandMechanicalEngineering,NortheastForestryUniversity,Harbin15oo40,China; 2.Qingdao JunfengHuachuangElectronic TechnologyCo.,Ltd.,Qingdao 266199,China)

Abstract:In alusion to the low measurement accuracyof on-board weighing systemadynamic weighing model based on BP neuralnetworkoptimizedbyParrotoptimization(PO)algorithmisproposedtocopewiththeoverloadingoftrucksandrealizethe dynamicandacuratemeasurementof truck’sloadcapacity.Theon-board weighing systemisintroduced briefly,andthesignal collectedbythesensorispreprocessdbymeansofthecompositefiltering method.Theweightsandthresholdsof theneural networkareoptimizediterativelybymeansofthePO-BPalgorithmtoconstructaweighing modelwith thepreprocessedsignals oftirepressure,,whelrotationalacelerationand temperatureasinputs,soastostimatetheloadcapacityofthetruck.The experimental resultsshow thatthePOoptimization basedBP neural network weighing algorithmcan decrease theroot-meansquare error to 2.3% and theaverage absolute error to1.9% within a smaller numberof iterations.Incomparison with the traditionalBPneuralnetwork,thealgorithmhashighermeasurementaccuracy,themeasuredvalueof truckloadcapacityis closer to the real value,and the relative error is within 5% ,which can meet the accuracyrequirement of on-board weighing.

Keywords:on-board weighing system;Parrot optimization algorithm;BP neural network;tire pressure sensor;truck load; measurement accuracy

0 引言

随着交通运输业的快速发展,大型货车的数量也迅速增加,车辆超载问题日益严重,这一现象缩短了公路桥梁的寿命,并引发了交通安全隐患。(剩余6368字)

monitor
客服机器人