基于特征选择和RS-LSTM的变压器故障诊断方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:变压器;故障诊断;特征选择;长短期记忆网络;灰狼优化算法;残差连接;SE注意力机制中图分类号:TN911.23-34;TM411 文献标识码:A 文章编号:1004-373X(2025)20-0147-08

Method of transformer fault diagnosis based on feature selection and RS-LSTM

WUYuhao,ZHUWenzhong,CHENYiyue,LUO Yuan (SchoolofComputerScience&Engineering,SichuanUniversityofScience&Engineering,Yibin643O02,China)

Abstract:Inallusion totheproblemsof featureredundancyandlowclassficationaccuracyincurrent transformer fault diagnosismethodswhendealingwithmultidimensionalandnonlineardata,amethodof transformerfaultdiagnosisbasedon featureselectionandRS-LSTMisproposed.According tothelivinghabitsofwolf packs,theroledivisionofreconaissnce wolves,atack wolves,andguardwolvesareproposedtoexpandthesearchrangeofwolf packs.Thegreywolfalgorithmis improvedbycombininggatecontrol mechanismandpheromoneupdate mechanism to furtherenhance therandomnessand flexibilityoftheoptimization process.TheSEatention mechanismwithresidualconnectionsisusedtoimprove LSTM,making the modelmore focusedonkeyfeaturesrelatedtotransformerfaultsandenhancing theaccuracyoffaultdiagnosis.Bycomparing diferentmethodswithothermodels,thesuperiorityandgeneralizationof thefeatureselectionmethodwereverified.The experimentalresultsshowthat,incomparisonwithLSTM,theproposedRS-LSTMcanimproveacuracyof3.84%andcallate of 3.67% ,which provides more effctive solution for transformer fault diagnosis and has a certain engineering application value.

Keywords:transformer;faultdiagnosis;featureselection;longshort-termmemorynetwork;greywolfoptimizationalgorithm; residual connection; SE attention mechanism

0 引言

要的价值[]。(剩余8993字)

monitor
客服机器人