基于深度残差Bi-LSTM的风电功率预测

  • 打印
  • 收藏
收藏成功


打开文本图片集

Abstract:Deep learning models typicall outperform traditional machine learning models in windpower forecasting.With theincreaseinthenumberofnetworklayers,performancegainsareoftenhinderedbytheproblemofnetworkdegradation.On thisbasis,awind powerforecastingtechnologycombining thedeepresidualstructure with bidirectionallongshort-termmemory (Bi-LSTM)networkisproposed.Inthismethod,thetrainingstabiltyofthedeeBi-LSTMnetwork isenhancedbyintroducing residualconnections,capturingthelong-termtemporaldependenciesinwindpowerdata.Additionally,theAdamoptiization algorithmisusedtooptimizethemodel’shyperparameters.Theempiricaltestingofthismethodwasconductedusingadataset fromawind powerenterpriseinQinghaiProvince.Theexperimentalresultsdemonstratethat,incomparison withsupportvector regresion (SVR),thestandardLSTMmodelandtheBi-LSTMmodel,thedeepresidualBi-LSTMmodelcan exhibitsignificant advantagesinwindpowerforecasting.Itsmeanabsoluteeror(MAE)predictionerrorisonly61.55,whichissignificantlylower than that of other three methods,and the coefficient of determination R2 valuereaches O.9377,indicating that this model has goodfittingandpredictionacuracy.ItfullydemonstratesthepotentialandvalueofthedeepresidualBi-LSTMmodelinthe field of wind power forecasting.

Keywords:windpowerprediction;deepresidual;Bi-LSTM;residual connection;Adamoptimizationalgorithm; hyperparameteroptimization

0 引言

模化潜力的可再生能源之一,在实现碳中和目标中扮演着关键角色[1。(剩余9196字)

monitor
客服机器人