人工智能大数据技术在治理虚拟货币刑事犯罪中的应用研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TN915.08-34;TP39 文献标识码:A 文章编号:1004-373X(2025)16-0167-05

Research onapplicationof artificial intelligenceandbigdata technology in governance of virtual currency criminal offense

LIUHuan²,XIAOWei³ (1.Xi'anJiaotongUniversity,Xi'an710o49,China; 2.Shaanxi Public SecurityNew NetworkFinancial CrimeResearch Center,ShaanxiPoliceColege,Xi’an7Oo21,China; 3.ShaanxiProvincial Public SecurityDepartment,Xi'an71oo18,China)

Abstract:In allusion to thegovernance needs of virtual currencycriminal offense,anenhanced detection modelbasedon relationalgraphconvolutionalnetwork(RGCN)isproposed.Inthemodel,originalfeatureandcross-temporalfeature concatenationmechanismareintegratedinovativelyintothegraphembeddnglayerdesign,efectivelymitigatingtheinfoation losscausedbytheredundantconvolution.Therandomforestensemblelearningstrategyisusedtooptimizethefeature representationinthegraphembeddinglayer,significantlyimprovingmodelrecognitionaccuracy.Theconstructedthre-layer RGCN framework canreducecomputationaloverheadbymeansofspatio-temporalfeaturefusion strategyandoptimizetherecal rate.TheexperimentalresultsdemonstratethattheLSTM-basedRGCNcanperformthebestintherecallindex,whichis67.6% and is 4.4% higher than the GRU variant;while the GRU structure focuses moreon the optimization of accuracy,with an accuracy of 87.3% .Combining thecurrenturgent requirement for monitoring high-risk individuals inanti-money laundering scenarios,itdemonstratesthattheproposedmodelcanefectivelysupportvirtualcurencytransactionsupervisionpracticesby enhancing recall performance.

Keywords:artificial intelligence;virtual currency;criminal offense;dynamicgraph convolutional network;LSTM;GRU; recall optimization

0 引言

流通的媒介,以及作为在特定虚拟环境中流通的数字媒介,不仅支持服务与商品的便捷交换1,还具有独特的交易特性。(剩余7240字)

monitor