基于GA-LSTM神经网络的充电桩故障诊断

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TN919-34;TP183 文献标识码:A 文章编号:1004-373X(2025)16-0097-08

DOI:10.16652/j.issn.1004-373x.2025.16.016

Charging pile fault diagnosis based on GA-LSTM neural network

ZHOU Jin, GAO Tian,WANG Qiang, YIN Zhangcheng, ZHU Jinrong (Collegeof InformationEngineering,Yangzhou University,Yangzhou 225ooo,China)

Abstract:Thechargingdataofelectricvehiclechargingfacilitiesincludesvoltage,current,temperature,power,etc.allof whicharetimeseriesdata,andthedatahasthecharacteristicsofinfluencingtheprevioustimeandasociatingthenexttime. Thelongshort-termmemory(LSTM)neuralnetworkisusedtominethecorelationfeaturesinthedatavolume,andthefeature modelbetweentheworkingdataandthefaultisestablishedtoconductthefaultdiagnosisofchargingpile.Duetotheproblems ofoverfitingandgetingstuck inlocaloptimainLSTMneuralnetworks,ageneticalgorithm(GA)isproposed tooptimizethe LSTMneuralnetwork forfaultdiagnosisofcharging piles.GAisusedtosearch fortheoptimal solutionbysimulating the biologicalevolutionprocessindividualswithhighfiessareselectedforeproduction,andmutationoperationsareintroducedt graduallyoptimizethecombinationofhyperparameters,soastoimprovetheperformanceandeficiencyoftheLSTMmodel.In comparison with the experimental resultsof LSTMneural network,the RMSEvalueand MPAEvalueof GA-LSTM neural network prediction results are decreased by 56.7% and 60.3% ,respectively,and the accuracy rate of fault diagnosis is increased by 3.2% .Therefore,GA-LSTMneural network can beusedasa dep learning technologyforthe fault diagnosis of charging pile.

Keywords:charging pile;dataprediction;faultdiagnosis;geneticalgorithm;long short-termmemoryneural network; normalization processing

0 引言

随着电动汽车销量逐年增长,电动汽车充电桩作为配套产品也得到快速发展,其功能越来越完善,智能化程度也越来越高。(剩余9283字)

monitor