LSTM-MSTCN-XGBoost混合模型的时空数据特征挖掘

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TN911.7-34;TP391 文献标识码:A 文章编号:1004-373X(2025)16-0157-04

Spatiotemporal data feature mining of LSTM-MSTCN-XGBoost hybrid model

LIYangzheng',YI Jiliang²

inanUniversityofTechnology,Zhuzhou412Ooo,China;2.GuilinUniversityofAerospaceTechnology,Guilin541004,Ch

Abstract:Duetothespatiotemporalcorelationanddynamicevolutionofspatiotemporaldata,featureminingisdificult. Thesingledimensionalanalysismethodsaredificulttocomprehensivelycaptureitslong-termandshort-termvariation characteristicsofspatiotemporalchanges,whichcaneasilyleadtothelossofkeyinformation.herefore,aspatiotemporaldata feature mining methodbasedontheLSTM-MSTCN-XGBoost hybrid modelis proposed.TheOWLisusedtoconductthe formal modelingofspatiotemporaldata,LSTMandMSTCNmodelsareused tominelong-termandshort-termfeaturesrespectively,and theXGBoostmodel isinputtofuseandoutputfeaturepaternrecognitionresults.Theexperimentalresultsshowthat the spatiotemporaldata features extractedbytheproposedmethod haveaglobal spatiotemporal Moran'sIindex exceeding O.9.In traficspatiotemporaldatamining,thecharacterizationofcongestionfeaturesisalsomorerealistic,providinganeffective approach for spatiotemporal data mining and intelligent decision-making.

Keywords:spatiotemporaldata; featuremining;LSTMmodel;MSTCNmodel; XGBoostmodel;OWLformalmodeling

0 引言

时空数据指包含时间特征和空间特征的数据,此类数据具有时空关联性与动态变化性。(剩余4474字)

monitor