基于卷积神经网络和Transformer的电能质量扰动分类

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TN915.04-34;TP183;TM711 文献标识码:A 文章编号:1004-373X(2025)16-0113-10

PQDsclassificationbasedonconvolutional neural networkandTransformer

WANGGaofeng,ZHANGHao,QIANYun,GAOMan

Abstract:With the large-scaleapplication of new energy,the probabilityof power quality disturbance (PQDs)events is increasedsignificantlyandthesedisturbancescancausesignificantloses topowerdistributionsystems.Therefore,amethodof PQDclassification basedonconvolutional neuralnetwork(CNN)and Transformerisproposed,namely CTranCAM.Inthis method,theconvolutionoperationofCNNisusedtoautomaticallyextractlocalfeaturesofPQDssignal timeseries,andthen multi-headatentionmechanisminTransformerisusedtomodeltheglobalandlong-termrelationshipsofteextractedfeatures tocompensatefortheshortcomingsofCNNinprocesingglobalinformation.Therecognitionresultsareoutputbymeansoffully conectedlayer.Thesimulationof25typesofsynthesizedPQDsdataisconductedbymeansof CTranCAMmethod.Theresults showthat the classification accuracy of this method is99.60% under noise free conditions,and canreach 99.20%, 99.36% ,and 99.40% at signal-to-noiseratiosof 3OdB,40dB,and5OdB,respectively.Ithasgoodnoiseresistanceand generalization performace.Incomparison withperformanceofothermethods,theproposed methodhasgood classfication performancein different noise environments,which is an excellent PQDs classification method.

Keywords:powerquality disturbance;convolutional neural network;Transformer model; multi-headatention mechanism; featureextraction;classificationperformance

0 引言

随着资源枯竭和环境恶化问题日益严峻,可再生能源如太阳能和风能的广泛应用成为主要解决方案。(剩余11535字)

monitor