TS-SEA:用于时间序列分类的时域-频域-季节性联合对比学习

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TN911.7-34;TP301.6 文献标识码:A 文章编号:1004-373X(2025)16-0038-07

TS-SEA: temporal-frequency-seasonal joint contrastive learning for timeseriesclassification

LIKun’,TANJun²,GUINing²,ZHUZhaowei³ (1.School ofSoftware,XinjiangUniversity,Urumqi 83oo91,China; 2.SchoolofComputer Scienceand Engineering,Central South University,Changsha 41oo83,China; 3.School of Computer Scienceand Technology,Zhejiang Sci-Tech University,Hangzhou 311241,China)

Abstract:Timeseriesclasification (TSC)isthetaskofcategorizing sequentialdata intopredefined clasesaccording to their temporalpaterns.Real-world timeseriesusuallcontaincomplexcouplingoftrend terms,seasonalcomponents,outliers, andnoise,anditsacurateecompositioniscrucialtoimproveclasificationpeforance.Terefore,atimesriescassiication method,S-Ssoe,ichooiisnteioalydol FFTandSTL.Basedontheseviews,iterativelearningisrealizedbymeansofcontrastlearningbetweenencoders.Theresults indicate that incomparison with existing methods,theproposedTS-SEAmethodcanexhibitthebetterperformance whendealing with diverse time series applications.

Keywords:TS-SEA;timeseriesclasification;multi-viewjointlearning;contrastivelearnng;Fouriertransform;tieseries decomposition

0 引言

时间序列数据在现实世界中随处可见[1,对许多应用至关重要,特别是在诸如医疗保健[2-3]、金融[4、交通[5-6]和工业生产等领域。(剩余11295字)

monitor