基于FFT-DC-GRU-NLA的中长期居民用电量预测模型

打开文本图片集
中图分类号:TN911.23-34;TP18 文献标识码:A 文章编号:1004-373X(2025)16-0088-09
A medium and long-term residential electricity consumption forecasting modelbasedonFFT-DC-GRU-NLA
ZHANGCheng,SHEN Chao (Collegeof InformationandElectrical Engineering,Hebei UniversityofEngineering,Handan O56O38,China)
Abstract:Inallusion to the dificulties incomplex powerdata modeling,poor informationrepresentation capabilities,and lowpredictionacuracyinexisting mediumandlong-termresidential electricityconsumptionforecastingmodels,amediumand long-termelectricityconsumptionforecastingmodelbasedonFFT-DC-GRU-NLAisproposed.ThefastFourier transform(FFT)is usedto decompose the electrityconsumptiondata,and themulti-periodcomponentsareextracted by means of frequency domaindecompositiontoobtainasetof two-dimensionalsub-sequences.Itisusedastheinputfortheself-designedinforation representationmodule torealizemulti-scaleinformationrepresentationanddepfeatureextractionofthetwo-dimensional subsequencesbyintegratingconvolutionalneuralnetwork,gatedrecurentunit,andnon-localatentionmechanism.Thedep featuresarereconstructed bymeansoffullyconnectedlayersand iterativelypredicted bymeansof residual structure.Ona publicdatasetofresidentialelectricityconsumption,comparedwithseveraladvancedmodelsinthefieldofpowerprediction,the proposed modelhasthe highestpredictionaccuracyatpredictionlengthsof96,192,336and720.Moreover,themodelcanalso realizeexcelentpredictionaccuracyontwootherpublicdatasetsrelatedtopowerprediction.Theexperimentalresultsshowthat thismodelcanefectivelyimprovetheaccuracyofmediumandlong-termresidentialelectricityconsumptionforecastingandhas good generalization capabilities.
Keywords:mediumandlong-termelectricityconsumptionforecasting;fastFourier transform;convolutioalneuralnetwork; gated recurrent unit; non-local attention mechanism; multi-scale information; deep feature extraction
0 引言
在“双碳”政策的战略框架下,为达成“碳达峰”与“碳中和”的宏伟目标,新型电力系统的建设被确立为核心任务之一1。(剩余10762字)