基于改进YOLOv7-tiny的绝缘子缺陷检测网络

打开文本图片集
中图分类号:TN919.85-34;TP391.41 文献标识码:A 文章编号:1004-373X(2025)16-0105-08
Insulator defect detection network based on improved YOLOv7-tiny
HANXingyu,CHENWeizhen (SchoolofElectricalandElectronicEngineering,WuhanPolytechnic University,Wuhan43oo48,China)
Abstract:Whentheexistingdetectionmethodsidentifysmalldefectsofinsulatorsintransmisionlineimageswithcomplex backgrounds,theobtainedimages have problemssuchascomplexbackgroundenvironmentandsmalldefect size.Inorderto ensurethesafeoperationof transmision lines,aninsulatordefectdetectionnetwork(IDD-Net)basedonYOLOv7-tinyis proposed.Theatention-basedintra-scalefeatureinteraction(AIFI)isintroducedtoandleig-dimensionalfeaturesandreduce computationalcomplexity.Thebidirectional weightedpath featurepyramidnetwork(BPFPN)isusedforthefeaturefusion.The improvementsaremadetothedown-samplingmodule,soastoenhancethenetwork'sperceptualcapabilies.TheFocal-DIoU loss function isused toimproveanchorboxquality.Theresultsshowthat,incomparisonwiththebaselinemodel,theaverage accuracyofIDD-Netisimprovedby4.1%,theaccuracyandrecalareimprovedby2.4%and6.5%,thenumberofparameters and floating-point operations are reduced by 5.8% and 2.3% ,respectively,and the average accuracy for flashover defects is improvedby11.2%.Itdemonstratesthattheproposedmethodhassmallerparameters,beterperformanceand stronger robustness.
Keywords:YOLOv7-tiny;insulatordefectdetection;atention-based intra-scalefeatureinteraction;bidiretionalweighted path featurepyramid network;MCdown-samplingmodule;lightweight network
0 引言
随着电网规模的不断扩大,输电线路架设所需的面积也在逐渐增长。(剩余11723字)