基于随机森林算法的轿车碰撞损伤预测研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TN911.7-34;TP181 文献标识码:A 文章编号:1004-373X(2025)16-0139-07

Research onvehicle collision damage prediction based on random forest algorithm

LIU Xin, LIU Conghao,LI Gang,AN Xunan,TONG Shiyu, SUN Yilong (SchoolofAutomotiveandTransportationEngineering,LiaoningUnversityofTechnology,Jinzhouooo,China)

Abstract:Inorder tominimize thedegreeofdamage suferedbyvehiclesinunavoidablecollsionscenariosand improve roadtrafficsafety,avehiclecollsiondamageprediction modelbasedonthecollsionsimulationdatasetandtherandomforest algorithmisproposed.Thefiniteelementmodelofvehiclecolionsimulationisestablished,andthevehicledamagedataset under16Osetsofwokingcondiionsisobaindbyangingtheollier,collisonangle,collisonoffet,collisonsdetc. This datasetisused toestablishanavehiclecolision damage prediction model basedontherandom forest algorithm,nd the damagepredictionforautomobilecollisionsisprformed.Themultipletestingresultsshowthatthecollsiondamageprediction modelhas an averageabsolute percentage errorof20.09%androot meansquareerorof 3394.Incomparison withthe support vectormachinepredictionmodel,therandomforestcollsiondamagepredictionmodelhasbeterfitingeffect,andthedegreeof dispersion between the predictedandreal values islower,whichcan more acuratelypredict the specificdamagevaluesof the keypointsofthevehicleafteracollsion.Itcanprovideamoredetailedandaccuratereferenceforintelligentdrivingvehicle trajectory planning systems and adaptive constraints,so as to improve road safety.

Keywords:vehiclecollisiondamageprediction;randomforestalgorithm;collisionsimulationdataset;collsioncondition setting;trajectoryplanning;adaptive constraint

0 引言

目前,车辆智能化技术快速发展,已经在汽车领域取得显著成果。(剩余7034字)

monitor