基于集成学习的交通事故严重程度预测

  • 打印
  • 收藏
收藏成功


打开文本图片集

DOI:10.16652/j.issn.1004-373x.2025.16.011

中图分类号:TN912-34;U491.3 文献标识码:A 文章编号:1004-373X(2025)16-0061-06

Traffic accident severity prediction based on ensemble learning

JIA Xianguang',SONG Tengfei',LU Yingying² (1.SchoolofTransportationEngineering,KunmingUniversityof Technology,Kunming 65o5oo,China; 2.SchoolofIformationEngineeringndAutomation,KunmingUiversityofTechoogyKunming65O5,a)

Abstract:Inordertoimprovetheperformanceofroad traffcaccidentseverityprediction modelsandanalyze theimpactof acidentfeaturesonacidentseverityamethodoftraffcaccidentseveritypredictionbasedonadouble-layerStackingodelis proposed.The BSMOTE2 algorithm isused tobalancethedataandverifywhetherdatabalancing procesing willhaveapositive impact on model prediction.The GBDT-RFECV algorithm isused for k -fold cross validation selection to complete the feature dimensionalityreduction.Atwo-layer Stacking model isbuilt.Thefirstlayeriscomposedof BiGRUandXGBoost,using time seriesfeatures forBiGRUandstaticfeaturesforXGBostforthepreliminaryprediction.TheCatBoostmodelisusedatthe secondlayerandcombinedwith thepredictionresultsofthefirstlayerforthefinalseverityprediction.Theresearchresults indicate that theaccuracyofthemodel,macro F1 ,andmacroAUChaveallimproved significantly,indicatingthatdatabalance processing hasapositiveimpactonmodelprediction.IncomparisonwithKNN,BiGRU,RF,andXGBoost models,theproposed double-layer Stacking model can improve prediction accuracy by 5.45%,10.23%, 1.78% ,and 2.34%,respectively,the macro F1 (204 value can be increased by 5.31% , 9.91% ,1.35%,and 1.92%,respectively,and the macro AUC canbe increased by11.13%, (204 6.97% , 2.13% ,and 2.71%,respectively.The double-layer Stacking model can perform beter than other modelson multiple evaluation metrics.

Keywords:traficsafety;traffcaccidentseverity;predictiveanalysis;ensemble learing;machine learning;deeplearning; feature dimensionalityreduction

0 引言

随着社会经济的快速发展,汽车保有量逐渐增加,但道路交通安全问题日益突出。(剩余7611字)

monitor