基于动态自适应的电梯钢带典型故障检测算法

打开文本图片集
DOI:10.16652/j.issn.1004-373x.2025.16.026
中图分类号:TN919-34;TP391 文献标识码:A 文章编号:1004-373X(2025)16-0161-06
Dynamicself-adaptiveelevatorsteelbelttypical faultdetectionalgorithm
ZHOUZecheng1,LIChen1,XUFeng²,ZHANGCai³,HUANGKanfei² (1.CollegeofEnergy,Environmentand Safety Engineering,ChinaJiliangUniversity,Hangzhou 31o8,China; 2.ZhejiangAcademyofSpecialEquipment Science,Hangzhou 31ooo9,China; 3.Wenzhou Special Equipment Inspection& Science Research Institute,Wenzhou 325oo1,China)
Abstract:Inalusion totheproblems ofpoorreal-timedetection,lowaccuracyandcomplex processintraditional elevator stlbeltypicalfaults,nlevatorstelbelttypcalfaultetetionalgoribsedonamicself-adapation,DOis proposed.ThedeformableconvolutionDCNv2isusedtoreplacetraditionalconvolutionlayers,soastobeteradapttovariations inshapesand structuresoffaults.Themulti-scalelarge kernel separable (MLKS)moduleisconstructedtoenhancethe model's adaptabilitytodiferentfeaturescalesandspatialvariations.Adual-pathchannelatention(DPCA)mechanismisproposedto strengthenthemodel'scapabilityinfeatureperception,extraction,andfusiononthechaneldimension.Adynamicshared alignment(DSA)detection headisdesigned tooptimizethe independence,irelevance,and featureconflictisuesduring localizationandclassificationtasks.Theexperimentalresultsshowthat,ontheelevatorsteelbelttypicalfaultdatasets,DSMAYOLO can increase mAP@0.5and mAP@0.5~0.95by4.4%and10.1%respectively compared with the baselinealgorithm YOLOv8n,whichisbeterthanothercomparativeobjectdetectionalgorithm,andcanmet thereal-timerequirementsfor elevatorsteel belt typical fault detection,providing references for elevator fault diagnosis methods and applications.
Keywords:elevatorsteelbelt;faultdetection;dynamicself-adaption;YOLOv8n;deformableconvolution;dual-chael attention mechanism; feature sharing
0 引言
随着社会经济水平和城市化进程的迅速发展,电梯已成为人们必不可少的垂直交通工具,同时人们对于电梯的安全性和舒适性的要求日益增加,因此新材料、新工艺、新技术也逐渐在电梯制造、设计、运维中开展应用。(剩余6941字)