基于YOLOv5的无人机桥面病害检测算法研究

打开文本图片集
DOI:10.16652/j.issn.1004-373x.2025.16.002
中图分类号:TN911.23-34;TP391.4 文献标识码:A 文章编号:1004-373X(2025)16-0007-06
ResearchonUAVbridgedeck disease detectionmethod based on YOLOv5
DAI Pengfeil,², ZOU Jingshan³4,YANG Liu3,4 ,LIU Heng3,4 , YIN Huiying4, 5
(1.NanjingchUivesityg16a;2.inlagedugod.g; 3.School of Information Science and Technology,Southwest JiaoTong University,Chengdu 611756,China; 4li 5.Tangshan Institute,Southwest JiaotongUniversity,Tangshan O63ooo,China)
Abstract:Bridge diseases,suchasconcretepeeling,bridge cracks,rivetcorosion,etc.,mostlyoccur inlocalareas,but mostof thebridgediseasesarenotlocatedinthewhole bridgeatpresent.Theful-fieldrapidlocationanddetectionof bridge deckdiseasescanberealizedbycombining theigh-definitioncamerafunctionofunmannedaerialvehicle(UAV)withtherealtimetargetdetectionabilityof YOLOv5.Therefore,an UAVbridgedeck disease detectionalgorithm basedonYOLOv5is proposed.The UAVisused tocolectdataon thebridge pavement,andthelightweight modelYOLOv5sisusedasthebasic detectionmodel.TheYOLOv5smodelisimprovedasfolows:twoscalesareaddedonthebasisoftheexisting three characteristicmapsdetectionwithdiffrentscalestoimprovethedetectionaccuracyoflargertargetsandsmaertargets;SoftNMSalgorithmisusedtoinsteadofNMSalgoritm.Inordertoensuretheful-fieldrapidpositioninganddetectionaccuracyof densediseases,thecollctedbridgepavementdataisinputintotheimprovedYOLOv5smodel,andtheoutputofthemodelis the detection result of bridge deck diseases.The experimental results show that the value of mAP of the optimized YOLOv5s model can reach 92.0% ,and the value of mAP@0.5:0.95 also can reach 73.2% . The processing speed of the model can reach 134f/s,whicheffectivelyandacuratelyidentifiesbridgepavementdiseases,andsignificantlyimprovestheaccuracyand efficiency of detection.
Keywords:bridge deck disease detection;YOLOv5;unmannedaerial vehicle;image colection;multi-scale detection; feature fusion
0 引言
桥梁作为轨道交通的重要组成部分,其建设在轨道交通修筑中占有重要地位。(剩余6414字)