基于MCSANet网络的运动想象脑电分类

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TN929.5-34;TP391 文献标识码:A 文章编号:1004-373X(2025)16-0067-08

MotorimageryEEGclassificationbasedonMCSANet

DU Jiang¹,², BI Feng³ (1.SchoolofComputerScienceand Technology,Shenyang UniversityofChemicalTechnology,Shenyang11o142,China;

2.LiaonngProvincialKeyLaboratoryofIntellgentTechnologyforChemicalProcessIndustryhenyang1O142China;

3.SchoolofInformationEngineering,LiaodongUniversity,Dandong118Oo3,China)

Abstract:Inordertosolve theproblemof insuficient feature miningand insufficient utilization indecoding electroencephalography(EG)signalsbymeansofthetraditionaldeeplearningmethod,aeeplearningmodel,MANet,is proposed,whichcombinestheparalelmulti-scaletemporalconvolutionwithsliding windowtechnologyandatentionmchanism. Theparalelmulti-scaletemporalconvolutionissedtofectivelycapturethetmporalcharacteristicsandspatialchracteistics ofEEGsignalsatdiferenttimescales.Theslidingwindowslicingtechnologyisusedtodividethefeaturesequencesand increase the numberof sequence samples.The weights ofeach partofthe sequence samples areasignedandfused by means of themulti-headself-atentionmechanism,whichcanfurther highlightmorekeyfeatures.Thefullyconnectedlayerandthe SoftMaxlayerareusedtowork together,soastoperformin-depthlearningandaccurateclasificationforthecapturedfeatures. Inorder tovalidatetheperformaneofthemodel,anexhaustiveexperimentalanalysiswasperformedontheBCICIV-2adataset. Theexperimentalresultsshowthattheaverageclassificationaccuracyofallsubjectsisashighas81.69%,whichverfisthe effectivenessoftheproposedmethodinminingthedeeppotential featuresofEEGand improvingtheclasificationperformance of motor imagery EEG.

Keywords:braincomputer interface;EEGsignal;parallelmulti -scale temporal convolution;sliding window slicing technology;multi-head self-attentionmechanism;ablation experiment

0 引言

解码人或动物大脑产生的脑电信号,实现脑与外部设备之间的信息交换[。(剩余11652字)

monitor