基于机器学习的区域性综合资源调度与优化算法设计

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TN915.04-34;TP391.9 文献标识码:A 文章编号:1004-373X(2025)16-0128-05

Machine learning based design of regional comprehensive resource scheduling andoptimizationalgorithm

LEIChengtao¹,ZHANGLi²,HANTengfei1 (1.College of Architecture and Environment,Sichuan University,Chengdu 61oo65,China; 2.Sichuan University Engineering Design and Research Institute Co.,Ltd., Chengdu 61O065,China)

Abstract:Inorderto enhancethe emergencyresource scheduling capabilityinurbandisaster preventionandreduction,a regional comprehensiveresourceschedulingandoptimizationalgorithmbasedonmachinelearning isproposed.Inthisalgorithm, thecontinumapproximation(CA)modelisused todeterminetheoptimalreplenishmentquantityandinventorylevelforsevering a specific location,and K -means clustering algorithm is used to cluster the pre allocated routes,making emergency resource schedulingmoreeficient.ByintroducingtheChristofiedesalgorithm,theschedulingpathisfurtheroptimized toensurefinding anaproximateoptimal solutionin polynomial time.Theexperimentalresultsshowthatthe proposed scheduling methodcannot onlyfindefectiveresourcescheduling strategiesinurban disasteremergencyresponse toimproveresourceutilizationand responsespeed,butalsooutperform themethodbasedonlocalobservationinboth motioncostandtotalcost,verifyingits advantages in emergency resource scheduling.

Keywords:emergencyresource scheduling;path optimization;machine learning;continuousapproximation model; K-means clustering algorithm;Christoffedesalgorithm

0 引言

自然灾害通常会对人们造成一定的安全威胁和财产损失,迅速向受灾区域部署必要的救济物资是救灾行动的首要任务[1-2]。(剩余5661字)

monitor