基于GAIL方法的鱼类个体运动策略恢复方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

Individual fish movement strategy recovering approach based on GAIL

ONG Jinghan1²,CHENPengyu,²,XUJun1²,YUE Shengzhi1²,MIN Zhongyuan2,LIU Xiaoyang1²,LIYuanshan 2, 3

(1.School of Information Science and Engineering,Dalian Ocean University,Dalian 116O23,China; 2.KeyLaboratoryofMarineInformationTechnologyofLiaoningProvince,DalianOcean University,Dalian116O23,China; 3.KeyLaboratoryofEnvironmentControledquacultureMinistryofEducationDlianOceanUniversityalian6,Cina)

Abstract:Reinforcementlearninginfishbehaviorstrategiesfaces limitationssuchasbeingconstrainedbypredefinedrules, rewardfunctionsrelyingonpriorkowledge,andaninabilittofullcaptureobjectbehaviorstrategies.Inviewofthis,amethod basedongenerativeadversarialimitation learning(GAIL)isproposedtorecoverindividualmovementstrategiesbyfishswarm movementtrajectorydata.Thestateandactionrepresentationsof individualfisharedesigned,and thedecision-makingprocess offish movementisexpressedwithafullconnectedneuralnetwork.Experimentswereconductedwithonelearerandmultiple individualteacherswhonavigatewiththeVicsek model.ExperimentalresultsdemonstratethattheGAILmethodcanrecover individualfishmovementstrategiesefectively,providinganeffcientstrategylearningapproachappicabletothestudyand simulationofotherbiologicalswarmbehaviors.In-depthanalysisof theswarmbehaviorrevealstheinteractionrulesof individualsandgroupdyamics.Therefore,theproosedmethodofersnewinsightsfortheapplicationofartficialintellgencein biological behavior research.

Keywords:GAIL;fishscholbehavior;movement strategyrecovery;artificial intellgence aplication; Vicsek model; fully connected neural network

0 引言

科学领域的研究焦点[1-3]。(剩余8941字)

monitor