基于改进的灰狼算法优化BP神经网络的人侵检测方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

Intrusion detection method based on improved grey wolf optimization algorithm optimized BPneural network

PENG Qingyuan1, WANG Xiaofeng,²,TANG Ao1,HUA Yingying1,HE Fei',LIU Jianping1,² (1.SchoolofComputerScienceandEngineering,NorthMinzu University,Yinchuan75oo21,China; 2.KeyLabelsassi

Abstract:Network securityissuesare becoming moreand more prominent in today'sworld.Theintrusiondetection technologyhasbeenrapidlydevelopedasanimportantpartinthefieldofnetworksecurity.Atpresent,BPneuralnetworkis widelyusedinintrusiondetection.However,thweightseletingofthetaditioalBnuraletworkisiaccurate,tsleaing eficiencyislowanditispronetofalingintolocalminima.Fortheaboveshortcomings,anintrusiondetectionmethodbasedon theimproved greywolfoptimization(IGWO)algorithmoptimizedBPneuralnetwork isproposed.TheIGWOalgorithmextends thesearcrangeof thewolf pack bychanging the linearcontrolparametersandadingtheinversecotangentinertia weight strategyinthegraywolfpositionupdateformulatoavoidfalingintothelocaloptimalsolution.Theimprovedalgorithmisused tooptimizetheinitialweightsandthresholdvaluesoftheBPneuralnetwork,andtheoptimizedBPneuralnetworkisappliedto intrusiondetection.TheexperimentalresultsshowthattheIGWOalgorithmhasbeterstability,optimizing eficiencyand optimizingaccuracy,andtheimprovedintrusiondetectionmethodisnotprone tofaling intolocalminima,hasstrong generalization ability,and has high prediction accuracy and reliability.

Keywords:nonlinear control parameter;inertia weight;GWOalgorithm;BPneural network;intrusiondetection;network security

0 引言

随着网络技术的发展,计算机网络的安全性受到越来越多的关注。(剩余10024字)

monitor