融合双通道特征信息的医疗短文本分类模型

打开文本图片集
Medical short text classification model with fusion of dual channel feature information
LI Chen²,LIU Na1,2 ,ZHENGGuofeng1,²,YANGJie1,²,DAOLu1,² (1.CollegeofComputerScienceandEngineering,NorthMinzuUniversity,Yinchuan75o021,China; 2.TheKey
Abstract:Inviewofthesparsefeatures,semanticambiguitiesandinsuficientextractionofshorttextfeaturesinthe medicalshorttexts,amedicalshorttextclassificationmodelEBDF(ERNIE-BiLSTM-DPECNN-FGM)fusingdual-chanel featuresisproposed.Thepre-trainedmodelisusedtoobtaindynamicwordvectors,whichmadethemodelcontainricher semantic information.Thenthe BiLSTMisusedtoobtainglobaltextfeature informationandthe DPECNNisusedtoobtain deep localtextfeatureinformation.TheFGMadversarialtrainingalgorithmisusedtodisturbancethedatatoimprovetherobustne andgeneralizationabilityofthemodel.Finally,thefeatureinformationofthetwochannelsisfusedtoobtainthefinaltext representation.TheEBDFmodelwascompared with the model withthe better efectontheshorttextdatasetsof three medical fieldsand two general fields.It can be seen that itsaccuracyis improved by about 0.57%\~6.16%,and its F1 value is improved by about 0.65% 3 5.80%
Keywords:medical text mining;short text clasification;feature fusion;BiLSTM; DPECNN;two-channel
0 引言
医疗行业是一个数据密集型和知识密集型的行业。(剩余16371字)