基于深度学习和Retinex理论的图像增强方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

引用格式:.基于深度学习和Retinex理论的图像增强方法[J].现代电子技术,2025,48((13):36-42.

Image enhancement method based on deep learning and Retinex theory

WANG Dexu,WANG Zhifeng,YANWenqiang (Schoolof IntelligentManufacturingandControlEnginering,ShanghaiPolytechnicUniversity,ShanghaiO2oo,Chna)

Abstract:Thisstudyaimstoimproveimagequalityunderlow-lightconditions,primarilyaddressingissuesofreduced visibilityandcolordistortion.BycombiningimageprocesingtechniquesbasedonRetinextheoryandadvancedneuralnetwork algorithms,aninnovativeimageenhancementframeworkisproposed.Thisframeworkconsistsoftwoparts,namedanimage decompositionnetworkandanimageenhancementnetwork.The former isresponsiblefordecomposing theoriginal image into illuminationcomponentandreflectancecomponent,whilethelaterisresponsibleforoptimizing parametersandperformingY correctinbythenaturalimagequalityevaluator(NIQE),adjustingthebrightnessandcontrastoftheilluminationcomponent, andthenre-fusing theilluminationcomponent with thereflectancecomponent,soastoenhanceoverallimagequality.Testson standard datasetsLOLandLOL-V2showthatthe proposed methodoutperformsmost existing image enhancement algorithms in termsof thepeak signal-to-noiseratio (PSNR)andthestructural similarityindex measure (SIM),whichdemonstratesits effectiveness and practicalityin the field of low-light image enhancement.

Keywords:neural network;Retinex theory; NIQE; γ correction; PSNR; SSIM; image enhancement; image decomposition

0 引言

当光线不足时,照片质量往往会降低,表现为可见度减弱、色彩失真,以及细节模糊和不自然的色彩再现[1。(剩余12061字)

monitor