基于YOLOv8n的轻量化道路裂缝检测算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

Lightweight road crack detection algorithm based on YOLOv8n

TURSUNMamat²,QIUJianzhuo1²,ZHUXinglin1,XULi1,² (1.Collegeof TransportationandLogisticsEngineering,XinjiangAgricultural University,Urumqi83oo52,China; 2.EngieeringResearchCenterforIntelligentTransportation,XinjiangAgriculturalUnversityUrumqi83o52,China)

Abstract:In view of the wideobjectdistribution scale,complexanddiverse featuresand thedemandof dealing witha large numberofdatasetsinautomaticroadcrack detection,alightweightroadcrack detectionalgorithmGCW-YOLO basedon YOLOv8isproposed.Firstly,theglobalatentionmechanismisintroducedintothebackbonenetworktoenhancetheabilityto extractandfuseroadcrackfeaturesfirst,andthentheoriginallossfunctionisreplacdwithWise-IoUlossfunctiontogetbeter featurefocusandreducethelossoffeaturesandclasification inprediction.Finall,thelightweightnetworkstructureGhostNet isintroduced intotheC2fmodule toimprovethefeatureextractioneficiencyofthemodelandreducethecomputational complexity.Experimentswereconductedonaself-madeexpresswaycrack diseasedatasetwithatotalof15116images,andthe generalizationperformanceofthealgorithmwasverifiedonpublicdatasets.Experimentalresultsshow that themeanaverage precision (mAP)oftheproposedalgorithmreaches63.5%,whichisimprovedby6.0%incomparison with thatoftheoriginal model, itsspatial and temporal efficiencyisimproved by 3.0% and 8.5% ,respectively,and itsdetection speed reaches 250 f/s. Thecomparativeexperimentalresults show thattheGCW-YOLOalgorithmcombines the advantagesof lightweightand high detectionaccuracyandshowsgood generalization,soithasgoodpracticalvalueandpromotionprospectinroadmaintenance.

Keywords:road crack detection; deep learning; YOLOv8n;atention mechanism; lightweighting; feature focus

0 引言

公路作为重要的交通基础设施,对促进社会经济发展具有重大意义。(剩余10690字)

monitor