基于样本重要性的分布式深度学习通信优化策略

  • 打印
  • 收藏
收藏成功


打开文本图片集

Distributed deep learning communication optimization strategy basedonsampleimportance

MENG Yugong (GuangxiCodemakerInformation TechnologyCo.,Ltd.,Nanning53ooo3,China)

Abstract:Thecomputing nodes indistributeddeep learning(DDL)need to frequentlyexchangegradientdatawith the server,whichresultsinlargecommunicationoverhead.Inviewof this,aDDLcommunicationoptimizationstrategybasedon sampleimportance isproposed.Itmainlyincludesthreecontents.Theimportancedistributionofdatasamples isexploredby confirmatoryexperiments.Theimportanceofdatasamplesisevaluatedbycross-entropylossIncombinationwiththenetwork statusawarenessmechanismandbytakingtheend-to-end network delayasthenetwork status feedback indicator,thecomputing nodesareusedtoadjustthecompressionratiosofthetransmissongradientdynamicall,whichreducesnetworktraficwhile ensuringmodelconvergence,therebyimproving thetraining eficiencyofDDL.Experimentalresultsshowthattheproposed methodanimprovecommunicationeffciencyefectivelyindistributed trainingsenariosofdiferentscalesIncomparisonwith the existing gradient compression strategies,the proposed method can reduce distributed training time by up to 40% :

Keywords:DDL;stochasticgradient descent;sampleimportance;cross -entropy;network statusawareness;dynamic compression

0 引言

深度神经网络(DNN)被广泛用于支持越来越多的人工智能应用,如计算机视觉、自然语言处理2和网络优化等。(剩余7952字)

monitor