基于深度特征融合的恶意软件检测方法研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

Research onmalwaredetectionmethodbasedon deep feature fusion

ZHANG Xiaoyu1,²,ZHANGZhenyou1,² (1.CollegeofArtificial Intellgence,NorthChinaUniversityofScienceandTechnology,TangshanO6321o,China; 2.HebeiKeyLboatrfustrialteligentrcetiorthiaUvesityfienedcholoagsa

Abstract:The features used in the current malwaredetection modelsaresimpleandthe detectionaccuracyof the models islow,andthemodelsfailtoconvergestablyduetoimbalancedcategories,soadeepfeaturefusionbasedmalwaredetection modelisproposed.Theobtainedrawtraficcapturefilesarecleanedtoremoveabnormaldatapackets.Anetworktraffcbasicinformationextractionlibraryisusedtosegmentnetworktraffcinthefomofsesions,obtainrelevantinformationaboutthetraffic,andetractterequiredstatisticalfeatures.ubsequently,tetatisticalfeaturesareeeplyprocssdbyfullyotedlay ersandautoencoders,ffectivelyeliminatingtheinfluenceofnoiseandgeneratingmorerobustfeatures.Next,aone-dimensional convolutional neuralnetwork (1D-CNN)andalong short-termmemory (LSTM)network areusedtoextractspatiotemporalfeatures jointlyandobtaincomprehensivelatentinformation,whicheliminatesunstablemodelconvergencewhilesignificantlyimproving the accuracyof modeldetection.The model was trainedandtestedonamixed datasetof StratosphereIPSandUSTC-TFC2016, and compared with five other models. The model achieves an accuracy of 99.48% and an F1 -score of 97.82% for binary classification tasks,and achieves an accuracy of 93.16% and an F1 -score of 92.69% for multi-classification tasks.The test results show thatthe model in this paper can effectively eliminate the unstable convergence caused by classimbalance.

Keywords:networktraffc;deeplearning;statisticalfeature;temporal feature;spatialfeature;classimbalance;malware classification

0 引言

在数字化时代,恶意软件成为网络安全领域的一大威胁,对个人用户、企业机构以及整个网络生态系统都构成了潜在的危胁。(剩余11628字)

monitor