基于级联式逆残差网络的游戏图像多模态目标精准辨识研究

打开文本图片集
Research on game imagemultimodal objectprecise identification basedoncascadedinverseresidualnetwork
LIUJianzhi
(ShenyangLigongUniversity,Shenyang11oooo, China)
Abstract:Theobjects inthegame have complexfeaturessuch asshape,colorand texture.Inaddition,theobjects appear indiferentperspectives,scalesandpostures,allofwhichincreasethediicultyofbjectrecognition.Acascadediverse residualnetworkcanenhancethemultidimensionalfeaturesoftheobject,andcanrecognizetheobjectefectivelyeveninthe presenceofocclusion,deformation,etc.Therefore,agameimagemultimodalobjectpreciseidentificationmethod basedon cascadedinverseresidual network isproposed.Abackbonenetworkconsisting ofconvolutional layersandcascaded inverse residualmodules basedondepthwiseseparableconvolutiondesignisconstructed.Thisnetworkisused toextract thenputtd gameimage features preliminarily.Thechannelrearrngementisused toenhancetheinformation exchange among channels.The featureenancementnetworkisusedtoupsamplethefeaturemaps learnedbythebackbonenetwork.Themultimodalobject featuresareetractedincombinationwiththemulti-chanelfeaturefusion.Theobjectposition,direction,andotherinforation areoutputedbyapredictionnetwork thatcanachieveclasificationandregressontasks.Sofar,apreciseidentificationof multimodalobjects ingameimagesisachieved.Theexperimentalresultsshowthatthemethodcanachievetheidentificationof thecharacters,text,scene elements andother objects in the gameimages,with atraining lossofonlyabout O.O5andan F1 -score of 0.967. To sum up,the multimodal object recognition effect of game images is good.
Keywords:inverseresidual;;gameimage;;multimodal;channelrearrangement;SIoUlossfunction;objectidentification; convolutional layer;object location
0 引言
度不断提高,为玩家带来了更为真实和沉浸式的体验,但同时也给游戏图像目标辨识技术提出了更高的挑战。(剩余5474字)