基于改进的ResNet网络和特征融合的自标跟踪算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

Object tracking algorithm based on improved ResNet network and feature fusion

MENG Weijun',SUN Siwei',MA Sugang1,² (1.SchoolofomputerScienceandTechnologyXi’anUniversityofPostsandTelecommunications,Xi'an7,Cina; 2SanxiKeytselii

Abstract:Anobject trackingalgorithmbasedonimprovedResNetnetworkand feature fusion hasbeenproposedon the basisoftheATOM5Oalgorithm,soastoenhancetheobjectfeaturesextractedwithresidualnetworks.Anenhancedbotteneck block,integratingbatch-freenomalzation(BF)andposition-awareircularconvolution(ParC),ismploedwitintheReset-50 backbonenetwork.Thisefectivelybolstersthecaptureofglobalinformationandmitigatestheaccumulationoftrackingdrift.For theextractedfeatures,theatentionfeaturefusionmoduleisusedtofurtherenhancetheexpressionabilityofthefeaturesforthe objectbyfusingthedetailsofshallwfeaturesandthesemanticinformationofdepfeatures.Theproposedalgorithmwas validated with the OTB2015,VOT2018 and LaSOT datasets.Itachieves a success rate and precision of 70.2% and 91.1%, respectively,ontheOTB2015dataset,whichisimprovedby1.2%and1.5%,respectively,overthebenchmarkATOM50 algorithm. On the VOT2O18 dataset, its expected average overlap rate saw an increase of 4.4% . On the LaSOT dataset,its success rateand precisionareimprovedby2.4%and2.9%,respectively.Itsaverage tracking spedontheOTB2015dataset reaches 34.3 f/s,ensuring real-time tracking.

Keywords:deep learning;visual tracking; Siamese network;batch normalization;attention mechanism;improved ResNet network

0 引言

目标跟踪是计算机视觉领域的核心问题之一,其目的是给定第一帧的单个目标,在后续帧中找到与被跟踪目标最匹配的区域,并以矩形框的形式表示目标的大小和位置。(剩余14508字)

monitor