基于改进RT-DETR的小目标检测算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

SmallobjectdetectionalgorithmbasedonimprovedRT-DETR

WANGKang1,WANGXiaolin²,LIUXinzhi²,DENGJianzhi1 (1.UniversityofTechnology,Guilin541o4,China; 2.GuangxiDatengxiaWaterControlProjectDevelopmentCo.,Ltd.,Nanning53oo21,China)

Abstract:Smallobjectdetectionoften faceschallengessuchasmisseddetectionsandfalsepositivesduetothesmal proportionoftheobjecttotheimageandthelimitedsemanticinformation.Inviewof this,animprovedRT-DETRbasedsmall objectdetectionmodelisproposedtoenhancedetectionperformancewhileensuringreal-timeperformance.Thebackbone networkof theRT-DETRmodelismodifiedbydesigningapartiallre-parameterizedconvolutionmoduletoimprovefeature extractioneficiencyAniientmulti-scaleattention (EMA)mchanismisitroducedtoagggatespatialandcrossspatial information.TheHiLoatentionmechanismisemployedintheAIFIencodertoreducethecomputationalcostsandenhancethe robustnessofthedetectionalgorithm.ExperimentswereconductedontheFloW-Imgdatasetofthesmallobjectsonwater.The resultsshowthatboththemisseddetectionrateandthefalsepositiverateof themodelbasedontheimprovedRT-DETRare reduced in comparison with the baseline model RT-DETR.On the test set, the mAP@0.5 of the proposed algorithm achieves 0.841and itsmAP@0.5:0.95is0.394,representingimprovementsof5.5%and3.7%,respectivelyoverthebaselinemodelRDETR.The detection performance surpasses thoseof both the baseline model and the object detection models of YOLO series.

Keywords:small object detection; RT-DETR model; PCov; Transformer; EMA; HiLo attention mechanism

0 引言

目标检测作为计算机视觉领域中的重要问题,其主要任务包括识别图像中的目标类别和确定目标位置。(剩余9816字)

monitor